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Abstract

NMR frequency assignments are usually considered a prerequisite for the analysis of NOESY spectra, in turn
required for the calculation of biomolecular structures. In contrast, as we propose here, relatively high numbers of
unambiguous NOE identities can be consistently achieved in an automated manner by relying only on grouping
resonances into connected spin systems. To achieve this goal, we have developed for proteins two protocols, SPI
and BACUS, based on Bayesian inference. SPI (Grishaev and Llinás, 2002c) produces a list of the 1H resonance
frequencies from homo- and hetero-nuclear multidimensional spectra, grouped into effective spin systems. BACUS
automatically establishes probabilistic identities of NOESY cross-peaks in terms of the chemical shifts provided by
SPI. BACUS requires neither assignment of resonances nor an initial structural model. It successfully copes with
chemical shift overlap and does so without cycling through 3D structure calculations. The method exploits the
self-consistency of the NOESY graph by taking advantage of a network of J- as well as NOE-connected ‘reporter’
protons sorted via SPI. BACUS was validated by tests on experimental NOESY data recorded for the col 2 and
kringle 2 domains.

Abbreviations: BAF – BAckbone Finder; BACUS – Bayesian Analysis of Coupled Unassigned Spins; CLOUDS –
Computed Location Of UnassigneD Spins; SIF – SIdechain Finder; SPI – SPin Identification.

Introduction

The analysis of protein NMR NOESY experiments
starts by building lists of NOE-connected spin pairs
that fall within suitable tolerances from each peak’s
chemical shift coordinates. The standard approach
to deal with the ambiguity problem is to iteratively
eliminate those NOE assignments suspected to be stat-
istically incompatible with the latest, distances-based,
estimated structures. Such strategy hinges on the hy-
pothesis that correct matches, being self-consistent in
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the context of the underlying structure, should sup-
port each other when used as geometrical restraints;
in contrast, the incorrect assignments are essentially
random, hence likely to lead to inter-proton distances
inconsistent with the structure.

Current methods of automated NOESY analysis
are designed to filter out the ambiguous restraints via
suitably designed cost functions. This is achieved by
deriving probabilities of NOESY assignments either
via a molecular dynamics protocol, such as in the
ARIA method (Nilges, 1993, 1995; Nilges et al.,
1997; Nilges and O’Donoghue, 1998; Linge et al.,
2003), or via a self-correcting distance geometry
method NOAH/DIAMOD/ATNOS (Güntert et al.,
1993; Hänggi and Braun, 1994; Mumenthaler and
Braun, 1995; Mumenthaler et al., 1997; Herrmann
et al., 2002b). Both types of procedures rely on
the assignment of resonance frequencies, require in-
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tensive 3D structure computations and are variously
influenced by the initial structural models as well
as by the degree of ambiguity of the input NOEs.
Characteristically, with ∼ 2–10% initial unambiguous
NOEs, the final unique assignments rate obtained is
∼ 60–80%, with the error rate of ∼ 3–5%, and addi-
tional 10% NOEs with multiple assignments (see, e.g.,
Mumenthaler and Braun, 1995).

Here, we address the following question: Assum-
ing that one has access to a list of proton resonances
specified by their chemical shifts δ�, where � =
1, 2, . . .. N, N being the total number of hydrogen
atoms or groups of magnetically equivalent hydrogen
atoms, what is the probability P (i, j |O) that an ex-
perimental NOESY cross-peak O , found at chemical
shift coordinates δp ≡ (δ1,p, δ2,p), can be identified
as arising from protons with chemical shifts (δi , δj )?
In the context of this paper, by identity of a NOESY
cross-peak O is meant the probabilistically signific-
ant – i.e. unambiguous – recognition that the NOE
connects protons whose resonances occur at chemical
shifts δi and δj, without prior knowledge of the specific
assignment of hydrogen atoms Hi and Hj from which
they originate. It is proposed that the presence of par-
ticular sets of cross-peaks can be taken advantage of in
order to improve the probabilities of matches for other
NOEs. Thus, our aim is to extract the correct identities
by exploiting the topological self-consistency of the
NOESY graph. It should be apparent that attainability
of such a goal implies the possibility of refining chem-
ical shifts-based matching probabilities without need
to cycle through 3D structure calculations.

In our approach we exploit the idea that the local
environment is restricted, as it is mostly constrained by
covalent bonds encoded in the J-connectivities shown
by COSY/TOCSY-type spectra. Thus, if two protons
are proximal to each other, the rest of their J- or
NOE-coupled spin systems also are likely to occur
within the local neighborhood, which can be used to
modify the cross-peak matching probabilities. Bayes’
theorem (Kendall, 1987) provides a suitable mathem-
atical framework for the combination of probabilities
stemming from independent data sources. Based on
these ideas, we have developed SPI (Grishaev and
Llinás, 2002c), a procedure for computing, from
homo- and hetero-nuclear multidimentional NMR ex-
periments, the likelihood of nuclear spin resonances
appearing at defined frequencies. In this paper we
report on BACUS, a related heuristic protocol that
generalizes the SPI approach by extending it to the
sorting and identification of NOEs. As a validation,

Figure 1. The concept of BACUS: For resonances m unambigu-
ously connected to i, and n unambiguously connected to j, the
probability to observe the NOE between resonances i and j is estim-
ated from the observations of the NOEs between resonances (i,m),
(j,n), (m,j), (n,i), and/or (m,n).

BACUS was tested on experimental NMR data for
the col 2 and kringle 2 domains of matrix metallopro-
teinase II and plasminogen, respectively (Briknarová
et al., 1999; Marti et al., 1999).

Methods

Data processing

2D 1H/1H COSY, 70 ms TOCSY, 200 ms NOESY,
1H/15N HSQC and 3D 15N-edited HSQC-NOESY,
HSQC-TOCSY, HNHA and HNHB spectra of col 2
and kringle 2 were acquired and processed as previ-
ously reported (Briknarová et al., 1999; Marti et al.,
1999). Spectral data were analyzed via SPI, as repor-
ted (Grishaev and Llinás, 2002c). The SPI-identified
spin systems were converted into files containing the
chemical shifts as well as the experimentally detected
connectivity types. An example of such files is shown
under Appendix A.

BACUS protocol

Whereas SPI serves to determine the grid of frequen-
cies where NOESY crosspeaks Oij can occur, BACUS
establishes unambiguous identities for NOESY cross-
peaks based on the spin system grouping. The protocol
follows the rationale (Figure 1): If protons i and m
(and/or j and n) are known to be proximal, the observa-
tion of an NOE attributable to protons j and m (and/or
i and n, and/or n and m) should increase the likelihood
of a NOE between i and j. In practice, ‘reporter’ pro-
tons m and n – crucial within the BACUS scheme –
are those COSY-, TOCSY-, or NOESY-connected to i
and/or j.

Consider a NOESY cross-peak p tentatively as-
signed to a pair of protons (i,j), as well as to other
pairs. Let us also consider protons m and n, where
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Table 1. The estimated values of probabilities P (Omn|Oij) for
each of the expanded sets W(m) ⊗ W(n), where the sets
W = �,�C, and �T are defined in the text. The P (Omn|Oij)

are derived via Equations 5–9.

n

�(j) �C(j) �T(j)

m �(i) 1.0000 0.4130 0.2778

�C(i) 0.4130 0.3224 0.2440

�T(i) 0.2778 0.2440 0.2015

proton m (or n) either is identical to proton i (j), or
is connected to proton i (j) via COSY or TOCSY. The
pair (n,m) is sorted into one of two classes: n and m on
the same residue, and n and m on different residues.
The latter class is denoted by CT. The intra-residue
pairs are split into COSY-connected, denoted as C,
and the remainder, denoted as T. It should be appar-
ent that the C and T classes should not be interpreted
to imply COSY and TOCSY connectivities only: the
nature and number of connectivities can be general-
ized to include any type of unambiguous correlation
available from homo- or hetero-nuclear experiments,
which could include NOEs as well. We also define
a class �, encompassing �(i) and �(j), that include
solely protons i and j, respectively.

In the Bayesian jargon, the expression P (W|Y)

symbolizes the probability of event W being true given
event(s) Y, or, in other words, conditional on Y being
true. For a pair of resonances i and j, of potential
NOESY connectivity Oij, and an observed NOESY
cross-peak p with chemical shift coordinates δp ≡
(δ1,p, δ2,p) the conditional probabilities of Oij match-
ing the δp chemical shifts, P (Oi,j|δp), are estimated
as:

P (Oij|δp) = G(δ1,p, δi; σ) · G(δ2,p, δj; σ)∑
k,�

G(δ1,p, δk; σ) · G(δ2,p, δ�; σ)
, (1)

where G(x, y; z) ≡ exp(−0.5(x − y)2/z2) and σ is
the uncertainty of the cross-peak position in each di-
mension. (Henceforth, whenever

∑
k,�

is indicated, it

is defined over all possible resonances with chemical
shift coordinates δk and δ� that peak p can be attributed
to.)

Let P (OR|Oij) stand for the probabilities of ob-
serving at least one NOESY ‘reporter’ (OR) cross-
peak q, of chemical shift coordinates δq ≡ (δ1,q, δ2,q),
arising from protons m and n, (reporting on i and j,

respectively) conditional on (i,j) matching of NOESY
cross-peak p, where p �= q. The P (OR|Oij) should
be distinguished from P (Omn|Oij), the probabilities of
observing a NOE cross-peak between a specific proton
pair m and n given that a NOE cross-peak between
protons i and j was observed (listed in Table 1). On this
basis, the P (OR|Oij) likelihoods can be formulated as:

P (OR|Oij) ∝ 1

NM

M∑
m=1

N∑
n=1

P (Omn|Oij) · P (Omn|δq),

(2)

where δq does not appear within the left side term since
it is implied in OR, by the same token that δp is implied
in Oij. P (Omn|δq) are non-zero priors for matches of
the cross-peak q to resonances m and n and are com-
puted as formulated by Equation 1 for P (Oij|δp). M
and N are the numbers of reporter protons m and n for
i and j, respectively.

Our goal is to calculate the probabilities P (Oij|δp,
OR). Bayes’ theorem enables us to combine the
prior probabilities of NOESY chemical shifts matches
P (Oij|δp) with the likelihoods P (OR|Oij), in or-
der to produce the final, posterior probabilities
P (Oij|δp, OR), conditional on both chemical shifts
and connectivities:

P (Oij|δp, OR) = P (Oij|δp) · P (OR|Oij)∑
k,�

P (Ok�|δp) · P (OR|Ok�)
. (3)

For protons i,j not belonging to the same residue,
it should be apparent that the Omn connectivities that
influence P (OR|Oij) (Equation 2) are restricted to
the CT class only, while Oim, Ojn connectivities can
arise from C, T, and � classes. In contrast, for pro-
tons i and j that belong to the same spin system, the
likelihoods are specified by the probabilities of ob-
serving NOESY cross-peaks (i,j), conditioned by the
observed C/T connectivities between i and j, i.e., by
P (Oij|Xij) where Xij denotes either Cij or Tij. Because
the (i,j) pair reports (through X = C or T) on itself,
it follows that for (i,j) belonging to the same residue
P (OR|Oij) ≡ P (Oij|Xij) which, in turn, we calculate
from

P (Oij|Xij) =
�

dVijdrijP (Oij|Vij) · P (rij|Xij) (4)

Here, rij is the i–j inter-proton distance and Vij the
volume associated to the expected NOESY cross-
peak. The estimated probability densities P (Vij|rij),
P (Oij|Vij), and P (rij|Xij) are shown in Figures 2, 3
and 5A,B, respectively. From numerical integration of
Equation 4, P (Oij|Cij) = 0.9998 and P (Oij|Tij) =
0.6907 were obtained.
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When computing P (Oij|δp, OR) via Equation 3,
before combining with the likelihoods, P (Oij|δp) <

0.05 were set to zero and the remaining priors were re-
normalized. Similarly, the priors that led to posteriors
< 0.05 were discarded and the remaining P (Oij|δp)

re-normalized. In iterative fashion, a new set of pos-
terior probabilities P (Oij|δp, OR) was then calculated
on the updated priors and the procedure was repeated
until all posteriors were > 0.05, our convergence cri-
terion.

Likelihoods of spectral connectivities

The crucial P (Omn|Oij) distribution is derived
from the statistical distance probability distributions
P (rmn|Oij), where rmn is the distance between pro-
tons m and n, and protons i and j are spatially close
enough as to generate the observed (i,j) NOESY cross-
peak. Also required are P (Vmn|rmn), the probability
distribution of cross-peak volumes Vmn conditional on
inter-spin distances rmn, and P (Omn|Vmn), the prob-
ability to observe a NOESY cross-peak of intensity
(i.e., volume) Vmn. The dependence of Vmn on rmn
reflects the local intramolecular neighborhood of the
pair (m,n) to the extent that the spin environment af-
fects its dipolar relaxation in the presence of spin
diffusion. P (Omn|Vmn) encodes for the sensitivity of
cross-peak detection, as affected by spectral dimen-
sionality, experimental noise, and line widths. From
the chain rule for probability propagation, we write:

P (Omn|Oij) =
�

dVmndrmnP (Omn|Vmn)·
P (Vmn|rmn) · P (rmn|Oij).

(5)

The P (Vmn|rmn) are estimated on the basis of a set
of distances extracted from selected protein structures
in the PDB database and relaxation matrix back-
calculation of NOESY cross-peak volumes at the
experimental mixing times (Figure 2).

Defining σnoise as the measured RMS spectral
noise, the P (Omn|Vmn) is taken as the probability of
the cross-peak maximum being > 3×σnoise. Assuming
Gaussian noise, upon integration we derive:

P (Omn|Vmn) = 0.5 + 0.5erf




Vmn

2π σmσn
− 3σnoise

√
2σnoise


 ,

(6)

where erf is the error function. Here we approximate
the cross-peak shape by 2D Gaussians such that σm
and σn are the linewidths for resonances m and n. The
P (Omn|Vmn) curve is shown in Figure 3.

Figure 2. Mean normalized NOESY cross-peak volume versus
interproton distance. Distances were obtained from the reported
structures of ubiquitin (Cornilescu et al., 1998) and BPTI (Berndt
et al., 1992) with NOEs backcalculated using MIDGE (Madrid
et al., 1991; Grishaev and Llinás, 2002a) assuming τmix = 0.2 s and
τc = 3.0 ns. Thin lines show the standard deviation about the mean
(thick line), used to calculate the probability distribution P (V|r),
assumed to be normal.

Figure 3. Probability of observation of a 2D NOESY cross-peak
as a function of its volume Vmn. The P (Omn|Vmn) values were
estimated via Equation 6 (see text) assuming σm = σn = 0.012 ppm
and σnoise = 5 × 10−5.

In order to calculate P (Omn|Oij) (Equation 5) we
also have to compute P (rmn|Oij). The values of this
distribution depend on the identities of m and n, as
related to i and j, respectively. Correspondingly, the
(m,n) reporter protons were grouped into six sets gen-
erically denoted by W: (a) �(i), �(j), include only
protons i and j, respectively, (b) �C(i), �C(j), pro-
tons COSY-connected to protons i and j, respectively,
and (c) �T(i), �T(j), protons in the same residue
non-COSY (e.g., TOCSY) connected to i and j, re-
spectively. The sets were combined by direct products
to generate the 9 possible expanded sets �(i)⊗�C(j),
�C(j) ⊗�T(i), etc., and the values of P (rmn|Oij) were
calculated for each of the expanded sets.

The starting point for the derivation of P (rmn|Oij)

is the inter-proton distance probability distribution
P (rij) in protein structures (Figure 4). This distri-
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Figure 4. Inter-proton distance probability distribution, extracted
from the structures of ubiquitin (Cornilescu et al., 1998), BPTI
(Berndt et al., 1992), calmodulin (Ikura et al., 1992), crambin (Bon-
vin et al., 1993; Jelsch et al., 2000), cytochrome c (Qi et al., 1996),
and human prion protein (James et al., 1997; Zahn et al., 2000). Thin
lines show the standard deviation about the average (thick line).

bution, largely independent of the protein fold and
size for rij < 10 Å, was derived from 6 high-quality
structures of globular proteins representing a variety
of folds. The P (rij) vs rij profile outlines a repetit-
ive pattern of spherical density shells that fade into
a continuum, in a ‘liquid-like’ fashion, as the posi-
tional correlations decay with increasing inter-proton
distances. For our purposes, the P (rij) initially may be
expressed as a sum of probability distributions accord-
ing to whether the pair (Hi, Hj) belongs to the C, T or
CT classes. Hence,

P (rij) = P (rij|Cij) · P (Cij) + P (rij|Tij) · P (Tij)

+P (rij|CTij) · P (CTij).
(7)

The conditional distance probability distributions
P (rij|Cij), P (rij|Tij), and P (rij|CTij), obtained for the
same set of the six protein structures used to generate
the P (rij), are generally well structured (Figure 5).

We are interested in formulating an expression for
the probability P (rij|Oij, CTij) to obtain a distance rij,
given that (i,j) are connected by an observable NOE,
and the fact that they belong to different residues. The
derivation follows Bayes theorem:

P (rij|Oij, CTij) = P (rij|CTij) · P (Oij|rij, CTij)

P (Oij|CTij)
. (8)

Under the assumption of isotropic rigid motion and a
suitable (relaxation matrix) treatment of the NOESY
data, the probability of observation of a NOE between
Hi and Hj depends only on the distance rij. Hence,
P (Oij|rij, Xij) = P (Oij|rij) ·P (rij|Xij), where X refers
to any of C, T, or CT classes. Therefore, ignoring
normalization, Equation 8 can be recast as

P (rij|Oij, CTij) ∝ P (rij|CTij )

∫
dVijP (Oij|Vij)·

P (Vij|rij),

(9)

Figure 5. Inter-proton distance probability distributions for
potentially COSY-connected (A), TOCSY-connected (B), and
inter-residue NOE-connected (C) protons, extracted from the set of
structures used for Figure 4. Thin lines show the standard deviation
about the average (thick line).

Figure 6. Distance probability distribution for potentially
NOE-connected protons i and j, which belong to different residues,
extracted from the set of model structures listed in the caption to
Figure 4. Thin lines show the standard deviation about the average
(thick line).

where the integral accounts for P (Oij|rij). The result-
ing P (rij|Oij, CTij) distribution is illustrated in Fig-
ure 6.

The probability distributions P (rim|Wim), P
(rjn|Wjn), and P (rij|Oij) were input to Monte Carlo
simulations to generate random spatial arrangements
of protons i, j, m, and n for each of the previ-
ously defined direct product expanded sets, and W
stands for any of the sets of reporter protons defined
above. Moves that placed proton pairs (m,n), (i,n), or
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(j,m) at < 1.7 Å, were rejected; the resulting probab-
ility distributions P (rmn|Oij) were accumulated over
∼ 105 configurations. Values of P (Omn|Oij) for each
of the expanded sets, calculated from P (rmn|Oij) via
Equation 5, are those listed in Table 1.

Results and discussion

The performance of BACUS was monitored through
the information entropies Sp (Shannon, 1948) of the
set of cross-peak prior matches for all peaks p:

Sp = −
∑
k,�

P (Ok�) ln P (Ok�). (10)

After convergence of Sp to a minimum, the output
matches were analyzed in automated fashion. Each
peak was associated with its matching odds, defined
as the ratio of its largest matching probability to the
next largest. For the analysis of col 2 data, the peaks
were sorted into three classes: (1) With infinite match-
ing odds (only a single, unique match); (2) with
matching odds between infinity and 2.0; (3) with
matching odds between 2.0 and 1.0. Within the second
class, the matches were singled out by choosing, for
each cross-peak, the one with the highest probability,
while matches within the third class were left ambigu-
ous. Thus, all cross-peaks within the first and second
classes became uniquely matched.

In the case of kringle 2, an identity hypothesis (i,j)
was rejected if a higher probability hypothesis (k,�)
existed, such that the posterior odds, defined as the
ratio P (Ok�|δp, OR)/P (Oij|δp, OR), was > 2.0. The
value of the cutoff, optimized for protocol’s perform-
ance, was found to provide a satisfactory compromise
between resolving power and accuracy. It was ob-
served that cutoff values within the 2–3 range are
reasonable, while higher values lead to a consider-
able decrease in the number of peaks that are uniquely
identified by the program.

Using kringle 2, we also have explored the depend-
ence of BACUS on σ, a main adjustable parameter.
Our tests show that for σ within the 0.0025–0.0400
ppm range the algorithm converges in 20–50 itera-
tions (< 1 min). We have resorted to four indicators to
evaluate the protocol’s performance (0.0025 ppm step
size for σ). First, we address the ‘resolving power’ of
the algorithm. One parameter is the protocol’s ‘com-
pression ratio’ (Figure 7A), defined as total number
of input chemical shift-based identities divided by the
number of output identities. A higher compression ra-
tio signifies a better protocol performance. Another

Figure 7. BACUS performance parameters for kringle 2 as func-
tions of σ the chemical shift uncertainty. (A) Compression ratio;
(B) fraction of uniquely assignable peaks; (C) fraction of unique
assignments that are different from those reported; (D) fraction of
unique assignments which differ from the reported by > 6 Å.

useful parameter is the fraction of peaks for which BA-
CUS obtains unique identities (Figure 7B). Again, our
goal is to maximize this number. The remaining two
parameters describe the protocol’s accuracy by refer-
ence to the reported manual assignments and protein
structures (Briknarová et al., 1999; Marti et al., 1999).
One of these is the fraction of the unambiguously
determined identities that differ from the published
assignments (Figure 7C). Since some of the NOESY
cross-peaks could correspond to more than one proton
pair, an extra measure of accuracy is the fraction of the
uniquely identified cross-peaks that map to distances
in the structure > 6 Å (Figure 7D).
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Table 2. Statistics of BACUS protocol for col 2 data

Unique Matches with Matches with

matches odds > 2.0 odds < 2.0

(Class 1) (Class 2) (Class 3)

Number of peaks in the 751 (71.6%) 178 (17.0%) 120 (11.4%)

class

Disagreements with manual 1 4 26

NOESY assignment

Disagreements within the class (%) 0.13% 2.2% 22%

From inspection of Figure 7, it is apparent that
the protocol exhibits best performance for σ within
the 0.0075–0.0150 ppm range. Since the responses of
all four parameters are similar, for a novel protein of
unknown fold the result suggests that σ can be optim-
ized by monitoring just the first pair of parameters, for
which neither knowledge of the assignments nor the
structure, is necessary. The optimal range found for σ

is in line with the data at hand, as it corresponds to
the expected uncertainty of the resonance and cross-
peak definition (1–2 points in our 2D spectra). On this
basis, we chose σ = 0.01 ppm for the col 2 and kringle
2 data sets.

A total of 1049 cross peaks were identified in
the combined set of 2D NOESY spectra for col 2.
The distribution of the entropies of the prior match-
ing probabilities (Figure 8) shows that the procedure
would have little chance of success if it were based
exclusively on chemical shift matching, as only ∼ 9%
of the prior matches are defined uniquely. Posterior
matching probabilities converged after 18 iterations
in < 5 min with a 300 MHz Pentium II processor.
Out of 1049 input cross-peaks, 88% were matched
with odds better than 2:1. Among these, 0.5% were
in disagreement with the reported manual assignments
(Briknarová et al., 1999). The statistics of the final
matching probabilities are listed in Table 2. Vis-à-vis
the reported structure (Briknarová et al., 1999), all
mismatches in classes 1 and 2 were found compatible,
and only 7 (16%) of the mismatches from the class 3
in disagreement.

The fraction of NOESY cross-peaks as function of
the effective number of possible identities for kringle
2, before and after BACUS analysis, is shown in Fig-
ure 9. Out of the 1354 input peaks, 1023 (75.6%)
were identified uniquely. Of these, 78 (7.6%) were
in disagreement with the manual assignments. How-
ever, only 24 peaks (2.3% of unique identities) cor-

responded to proton pairs distanced > 6 Å apart in
the structure, likely to represent true errors due to
the algorithm. These peaks, along with their reported
manual assignments, BACUS identities, and interpro-
ton distances in the kringle 2 structure are listed in
Table 3.

The first eight entries in Table 3 arise from reson-
ances that are missing in the output of SPI. The next
two are due to the errors in the peak positions. The
assignment of entry 11 is ambiguous – it is not clear
which, manual or automated, assignment is correct,
as both distances are quite large. Entries 12 and 13
are due to incompleteness of spin systems via SPI.
Entries 14, 19–24 are due to unfavorable contact geo-
metry of the involved residues, making the subsets of
useful reporter protons very limited. Entries 15 and
16 reflect an overestimation of the intra-residual like-
lihoods with respect to the intra-residual likelihoods
in the BACUS protocol, due to the ad hoc nature of
Equation 2. Entries 17 and 18 are due to normalization
of the probabilities in Equation 2 by the product of the
numbers of the reporter protons. The latter favors the
assignments (in these cases, erroneous) of the cross-
peaks to the shorter spin system over the longer spin
system if the numbers of the cross-peaks reporting to
both residues are similar.

It is apparent from Table 3 that misassignments are
most dramatic in terms of violation distances when
the correct identity hypotheses are excluded from the
start. Despite the noted shortcomings, in most other
cases the distance differences between the manual and
automated assignments are not as large.

Overall, the output indicates that ∼ 4% of the input
cross-peaks are left unrefined with two or more identi-
fications corresponding to intra-residue connectivities.
Comparison of these identifications against the previ-
ously reported structures showed that most of them
are likely to be correct. Since in typical NOESY
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Table 3. SPI/BACUS peformance for kringle 2a

peak Peak Manual Distance, Automated Distance,

# coordinates assignment manual assignment automated

assignment

1 4.92/3.22 R59:Hα/P61:Hδ3 2.43 R59:Hα/C22:Hβ2 13.02

2 4.07/3.22 P61:Hδ2/P61:Hδ3 1.76 A24:Hα/C22:Hβ2 6.11

3 3.22/1.40 P61:Hδ3/P61:Hβ2 4.04 C22:Hβ2/P61:Hβ2 8.91

4 3.22/2.18 P61:Hδ3/R59:Hβ2 4.73 C22:Hβ2/R59:Hβ2 13.38

5 3.22/2.03 P61:Hδ3/P61:Hγ2 3.03 C22:Hβ2/P61:Hγ2 9.13

6 2.22/1.23 P30:Hβ3/P30:Hβ2 1.77 P30:Hβ3/T81:Hγ2 32.89

7 1.57/1.22 P30:Hγ2/P30:Hβ2 2.34 P30:Hγ2/T81:Hγ2 30.18

8 7.13/0.48 W25:Hδ1/L46:Hβ3 3.42 W25:Hδ1/L46:Hδ2 6.68

9 4.94/2.42 R52:Hα/C51:Hβ3 4.64 W25:Hη2/D10:Hβ2 11.92

10 4.59/3.11 C80:Hα/C1:Hβ3 3.61 C80:Hα/D55:Hβ2 21.03

11 3.52/1.41 G19:Hα3/K70:Hβ2 6.78 G19:Hα3/K15:Hγ 7.76

12 6.81/1.02 Y9:Hε/I13:Hδ1 2.32 Y50:Hε/K70:Hγ3 17.95

13 7.49/2.58 L74:HN/M17:Hγ2 3.81 L74:HN/W72:Hβ3 7.30

14 5.15/4.90 S14:Hα/Y50:Hα 2.89 S14:Hα/W62:Hζ3 10.60

15 7.43/6.43 W62:Hδ1/W72:Hζ3 4.75 W72:HN/W72:Hζ3 7.12

16 7.14/6.46 F64:Hε/W25:Hζ3 2.52 W25:Hδ1/W25:Hζ3 6.68

17 7.84/4.97 K70:HN/D67:Hα 4.54 T65:HN/D67:Hα 7.34

18 7.84/2.62 K70:HN/D67:Hβ2 4.36 T65:HN/D67:Hβ2 6.87

19 7.13/4.07 W25:Hδ1/A24:Hα 4.00 N49:Hδ22/A24:Hα 6.04

20 3.16/2.43 C75:Hβ2/C51:Hβ3 2.80 Y9:Hβ2/D10:Hβ2 7.46

21 2.72/1.34 D26:Hβ3/A24:Hβ 4.38 C22:Hβ3/A24:Hβ 6.45

22 2.59/0.96 E57:Hγ/L74:Hδ1 4.39 W72:Hβ3/L74:Hδ1 10.12

23 7.19/1.99 K15:HN/I13:Hβ 4.09 K15:HN/L20:Hβ2 8.38

24 8.50/1.25 C22:HN/T16:Hγ2 4.16 C22:HN/Q23:Hβ3 6.67

aTotal NOESY cross-peak misassignments: 24/1023 (2.3%).

Figure 8. Distribution of the information entropies for the prior
assignment probabilities per peak for col 2.

spectra the fraction of cross-peaks that arise from
intra-residue connectivities is ∼ 40%, we assess that
there are at least another ∼ 4% of cross-peaks that
originate from several (intra- and inter-residue) pairs

of resonances, some of which could not be refined by
BACUS. Therefore, circa < 8% of cross-peaks should
be expected to lead to multiple identities, which means
that the apparent numbers of unique identifications
may underestimate the intrinsic refining power of the
method.

Conclusions

In the standard protocol of protein NMR data ana-
lysis, the emphasis is the assignment of resonance
frequencies to specific spins or groups of magnetically
equivalent nuclear spins (Wüthrich, 1986). In order to
derive the structure, this is followed by the full assign-
ment and quantification of the NOESY experiment.
However, the assignment of cross-peaks in protein
NOESY spectra can be extremely time-consuming, es-
pecially in the absence of data from approximate or
homologous structural models. The complexity of the
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Figure 9. Distributions of the numbers of assignment per peak for
kringle 2 before (A) and after (B) BACUS procedure. The num-
bers of assignment for each peak were calculated as exponents of
the corresponding information entropies, thus the appearance of
non-integer numbers of assignments per peak.

process is mainly due to the degeneracy of the NMR
resonance frequencies, a factor that aggravates with
increasing size of the macromolecule.

The CLOUDS approach (Grishaev and Llinás,
2002a,b) derives protein structures starting solely from
inter-proton distances obtained from a relaxation mat-
rix analysis of the NOESY. As is the case for the
standard protocol, CLOUDS demands an input file of
unambiguous NOEs. This requirement motivated us
to develop two programs, SPI as a tool to sort the
resonances’ chemical shifts and, as reported here, BA-
CUS, a protocol that maps the NOESY cross-peak to
its source proton frequencies, in turn probabilistically
determined via SPI. Thus, by exploiting Bayesian in-
ference at several stages (BAF, SIF, SPI, BACUS), the
complete CLOUDS protocol intrinsically differs from
the by now well established stochastic schemes of
NMR data optimization (e.g., Herrmann et al., 2002b;
Linge et al., 2003) in that its emphasis is in the unas-
signed proton signals as the main source of structural
information.

BACUS sorts NOEs by searching for self-
consistency of the overall NOESY (Figure 1). The
use of ‘reporter’ protons reduces the impact of chem-
ical shift degeneracy and compresses the number of
possible NOE identities by a factor of 6–9, yielding,
on the test cases, unambiguous matches for 75–88%
of the input cross-peaks. Overall, the performance of
BACUS when dealing with both col 2 and kringle 2
data is comparable to those published for ARIA or
NOAH/DIAMOD when tested against other proteins’
data sets, both in terms of relative number of uniquely
identified cross-peaks (75–88%, starting from 1–8%),
and of error level (∼ 5%).

The BACUS’ performance does not hinge on prior
knowledge of an approximate protein fold. Moreover,
the entire BACUS formalism is tunable as the com-
puted probabilities explicitly depend on spectral para-
meters such as mixing time and dimensionality, as
well as sample conditions, e.g., signal-to-noise and
molecular rotational correlation time. Because it re-
sorts to reporter, neighboring spins, BACUS (Figure 1)
is reminiscent of the ‘network-anchoring’ protocol re-
cently developed by Herrmann et al. (2002a,b) for the
ATMOS protocol. However, in contrast with the latter,
BACUS is entirely probabilistic in nature and, in its
current implementation, does not rely on sequence-
specific resonance assignments, running in seconds
without iterative structure calculations.

As a protocol based on statistical criteria, BACUS
cannot guarantee correct identifiations of the complete
set of NOEs. Furthermore, some of the approxim-
ations made during the derivations may have to be
re-assessed in order to improve the level of rigor.
Notwithstanding these caveats, our tests suggest that
the BACUS protocol is robust and reliable. It is our
hope that such an approach as presented here will
serve to complement, conceptually and in practice,
key components of the presently available methods
of protein NMR data analysis and molecular structure
elucidation.
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Appendix A: Examples of input file formats for
BACUS

The lines encode for the Glu4 spin system of kringle
2: HN, 9.491 ppm; Hα, 4.824 ppm; Hβ2, 2.248 ppm;
Hβ3, 1.781 ppm; and Hγ 2.356 ppm.

Cosy-type connectivities; ‘cylink.inp’ file

Resonance Chemical # of resonances Their IDs
ID shift linked to

1 8.491 1 2
2 4.824 3 1 3 4
3 2.248 3 2 4 5
4 1.781 3 3 4 5
5 2.356 2 3 4

Tocsy-type connectivities (extra to those in ‘cylink.inp’, same
format); ‘tylink.inp’ file

1 8.491 3 3 4 5
2 4.824 1 5
3 2.248 1 1
4 1.781 1 1
5 2.356 2 1 2
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